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Abstract

This work reports the study of video generative models for interactive video game
generation and simulation. We discuss and explore the use of available pre-trained
open-sourced video generation models to create playable interactive video games.
While being able to generate short clips of broad range of described scenes, such
models still lack controllability and continuity. Given these limitations, we focus
on producing and demonstrating a reliable and controllable video game generator
on a single game domain. We present MarioVGG, a text-to-video diffusion model
for controllable video generation on the Super Mario Bros game. MarioVGG
demonstrates the ability to continously generate consistent and meaningful scenes
and levels, as well as simulate the physics and movements of a controllable player
all through video.

1 Introduction

Recent progress and excitement in AI have been fueled by generative models that have been trained
on large-scale internet data. These models have shown the ability to generate highly realistic
text [24; 34; 2; 9], images [28; 26] and audio []. Despite being more complex modality, video
generation models have also made tremendous strides with models showing capabilities of producing
very detailed, high-resolution and complex scenes [5; 31; 27; 11]. The richness of the video modality
and the ability to capture information about the world that is difficult or cannot be captured by
text, mean that such models have enormous potential as a representation across a wide range of AI
applications [39]. It has already demonstrated promise in the media and entertainment industries
through examples productions of short films by creative directors and visual artists using such
models [22].

Similarly, using video generation models for video games has tremendous potential. Recent work has
seen the use of other generative AI models such as Large Language Models (LLMs) to help design
the narrative of games [10], levels and worlds [32; 21; 20], and even the use of more coding focused
models to help design within game engines. As these are language models operating over only text,
they are limited to text-based narration games or still rely heavily on game engines, parsing from
text to visual elements and fixed-elements and assets, making them constrained by the game engine’s
functionalities. However, one might draw the parallel to the potential effect of video models in the
production of movies and could imagine or ask that given the final consumption format of a video
games are in video, could the video game just directly be generated in video format? This would help
to overcome constraints and limitations of the game engines and open up the space and accessibility
for anyone to be able to easily create interactive video games, through a controllable text-interface. In
other words, we ask the question can video generation models replace game engines? While there are
still strides to be made in the capabilities of large video models in being able to accurately simulate
physics and in their controllability, we explore some of these current challenges and what such a
future model or method could look like and require.

Towards a new interface for designing, developing and playing video games, we highlight two key
desiderata of video generation models in such a domain, (i) controllable generation of actions and (ii)
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Figure 1: MarioVGG is a text-to-video model which takes in the initial game state as a single image
frame, and an action in the form of a text prompt. It then outputs video (a sequence of frames).
Examples of video produced by MarioVGG seen above across a diverse set of scenes. Video frames
generated shown are skipped for illustration purposes to fit in the figure.

automatic or controllable generation of environments and worlds that are coherent and consistent.
Controllable generation of actions enable novel, creative, imaginative actions that are difficult to
design to be rendered and displayed easily. Similarly, worlds described by the designer or users could
also create and lend itself to more immersive worlds and scenarios. Video generation models could be
thought of as a new format of Procedural Content Generation (PCG) [30] which is a suite of methods
and algorithms used to automatically design and generate elements and contents of games.

This report explores and discusses some of the key challenges of pre-trained video generation models
for video games. These video generation models were designed for being very general generators
that are able to generate scenes from arbitrary text descriptions well but struggle with continuity,
controllable and coherence of many elements in the scene. Given the limitations of current large
pre-trained video models, we focus on training a controllable video generation model on just a single
2-D domain and game, Super Mario Bros. We present, MarioVGG, a text-to-video diffusion model
for controllable video generation, capable of producing a sequence of frames given a text prompt
representing an action. MarioVGG demonstrates the ability to generate video that corresponds to the
text action provided while also automatically generating the levels and environments in the game
that is coherent. This coherence and continuity is also demonstrated by the ability to chain multiple
sequences of video generated, closely mimicking how a live video game would be played.

2 Background

2.1 Diffusion Models

Diffusion models are a class of generative models that learn to approximate a distribution by iteratively
transforming a random noise distribution into the target data distribution, referred to as the denoising
process. Training such models involve a forward diffusion process, which adds Gaussian noise
N (µ, σ2) to the data over several iterations, and a reverse diffusion process, which reconstructs
the original data from a random noise distribution also over several iterations. The reverse process
is modeled using a noise prediction network ϵθ(xt, t) which predicts the noise to remove at each
iteration, optimized through learning.

Trained with just this denoising objective and this process, diffusion models have shown state-of-the-
art performance in various tasks such as image generation, inpainting, and super-resolution.
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Video diffusion models extend the principles of diffusion models to the temporal domain, allowing
for the generation and refinement of entire video sequences. These models work by applying a similar
noise addition and removal process as in image diffusion, but operate across both spatial and temporal
dimensions. This involves learning consistency and smooth transitions between sequences of frames.

2.2 Pre-trained General Video Models for Video Game Generation

Such diffusion models have also powered much of the progress and development surrounding large
pre-trained video models which have been trained on large scale internet data. These models are
trained to be general-purpose video generators that demonstrate tremendous ability to generate
high-resolution videos based on arbitrary text descriptions. Stable Video Diffusion (SVD) [3] is an
open-source example of a large pre-trained video diffusion model that generates a short video given
an input image and prompt. SVD was trained on a large-scale video dataset that was carefully curated
and processed for video model training. Another example of such a model is Haiper [1], which also
facilitates the creation of short video clips with text prompting. Naturally, one might ask whether
these large pre-trained general video diffusion models can also generate realistic and reliable video
game scenes.

We briefly explore this question and conduct a few tests with some of these pre-trained general
video models. We found that while SVD and Haiper were able to generate realistic one-off clips of
hypothetical game scenes, it had several shortcomings that render them unreliable for video game
generation more generally. First, we found that these models lacked fine-grained controllability
required for video game generation. The models had difficulty animating specific game-related actions
reliably when prompted (e.g. “fire gun” or “jump towards the right”). Even if prompts were followed
in some circumstances, the generated video was inconsistent across scenes. For example, a “jump”
action in one generation would look different with that in another output generation. Second, these
models struggled with game continuity and coherence. These models were trained to generate a fixed
number of frames in each inference call, amounting to not more than 4 seconds of video. To generate
coherent gameplay videos of arbitrary length, multiple inference calls need to be strung together.
We found that the models were incapable of generating coherent videos across separate inference
calls (e.g. character motion and art style changes abruptly). Some examples of these shortcomings
are displayed in Figures 9, 10, and 11 in the Appendix. These findings are also observed elsewhere
by users playing with such models when these models are called recursively to continue animating
scenes. Hence, while such pre-trained video models are general enough to generate short clips of
arbitrary descriptions, at this time of writing, they still currently lack the controllability and continuity
needed to be able to generate consistent and coeherent videos needed for games.

3 Methods

We identify two fundamental requirements for generating and simulating video games using video
generation models. The first requirement is game controllability: in order for the generated video
game to be deemed interactive, the player must be able to control the game precisely and reliably. The
second requirement is game state preservation: the game state and parameters must be preserved
and kept consistent throughout the duration of an episode of the game to maintain continuity.

To study the abilities of video models to satisfy these requirements, we design our model architecture
and experiments based on the following assumptions. First, the game is controlled based on text
instructions provided by a player. Text is a universal and generic interface for which game actions
can be expressed. For very simple actions, these can be converted to simple text words. Second, the
game state and parameters are entirely determinable from the game’s visual output (a frame).

With the above assumptions, we learn a video diffusion model that is conditioned on text. To answer
questions about the abilities of such video models for game controllability and continuity (state
preservation) for video games, we limit the training of the model on gameplay data from just one
specific video game. The scaling, generalization and creation of arbitrary video game environments
requires much larger data requirements which we leave for future work. In our setting, a vidoe game
generation model must be able to generate video that is consistent with playable actions provided
in the form of text from this game. Specifically, our model takes an initial video frame of the game
along with text of the desired action (e.g. “jump”), and learns to generate a sequence of frames that
visually depicts the desired action.
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Model Architecture. We adapt a video diffusion model proposed by [18] for this task. The
model learns to approximate the distribution of subsequent frames p(x1:T | x0, atext) given an input
frame x0 and a text description atext. The model is based on a U-Net architecture that learns to
predict the noise applied to the subsequent frames frame1:T . Each downsampling and upsampling
block of the U-Net [29] uses factorized spatial-temporal convolution: a convolution operation in
the spatial dimension is first applied across all time steps, followed by a convolution in the time
dimension applied across all spatial locations. Compared to a standard 3D convolution, the factorized
spatial-temporal convolution significantly improves training and inference efficiency.

During training, the initial game frame is concatenated with T subsequent noisy frames. The action
text is encoded into an embedding using CLIP [25]. The embedding is then fed to all blocks of the
video diffusion U-Net model. The network is optimized using the mean squared error loss of the
predicted noise on subsequent game frames.

During inference, an initial game frame along with the CLIP-embedded action text is passed to the
model, and the model conditionally denoises the T subsequent frames to generate a video clip of the
desired action. Because the model only generates a finite number of frames in each inference call, we
can create arbitrarily long video clips by chaining together multiple model generations recursively.
Specifically, the T -th frame of a generated sequence is used as the initial frame of the subsequent
inference step. Crucially, chaining implicitly relies on our second assumption that the game state and
parameters are entirely determinable from the game’s visual output.

4 Experiments

4.1 Experimental Setup

For our study, we consider the Super Mario Bros game. While considering only 2-D game environ-
ments for simplicity, these games still have sufficient complexity such as some notions of simple
physics (i.e. gravity, collisions etc.) and game interaction rules.

Super Mario Bros (SMB) is a 2D side-scrolling platform game. In SMB, players control the character
Mario on-screen, with the goal of progressing through a sequence of levels to ultimately rescue a
princess at the end of the final level. SMB contains a total of 32 levels, divided across 8 “worlds”
(e.g. Level 4-1 refers to the first level in world 4). The relevant game mechanics are summarized in
Table 1 and the full action space is provided in Appendix A.1.

Table 1: Summary of Super Mario Bros. Game Mechanics

Mechanic What It Does

Movement Move left/right and jump
Power-ups Collect power-ups (Mushrooms, Fire Flowers, Starman) to gain abilities

such as temporary invincibility or the ability to shoot fireballs
Enemies Defeat by jumping or using fireballs
Obstacles Navigate through gaps, blocks, spikes, and moving platforms
Death Lose a life from colliding with enemies and dangerous obstacles, falling

into holes, or exceeding the time limit
Lives Begin with 3 lives. Lives can be gained from 1-Up Mushrooms or from

collecting coins. The game ends when Mario runs out of lives

4.1.1 Dataset Processing and Curation

We use a publicly available dataset of frame-by-frame SMB gameplay data collected from a single
player [23]. The dataset contains recorded gameplay from 280 distinct episodes, where each episode
is an attempt to play through one of the levels of the game. Among the 280 episodes, 141 are winning
episodes (i.e. the player successfully completes the level) and 139 are losing episodes, providing a
balance between successful and failed demonstration data.

Each frame consists of the following: a 256x240 image frame of the game screen that the player
observes, the frame number of the given episode, and the action made by the player.
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To simplify the gameplay simulation, the action space was limited to only two actions, i.e. “run right”
and “run right and jump” (hereafter referred to simply as “Run” and “Jump”). These two actions
were chosen as they constitute a large fraction of recorded actions in our dataset, with “Run” and
“Jump” representing 47% and 19% of all actions, respectively. Intuitively, these two actions alone
equip Mario with sufficient movement capabilities to navigate through most of the game.

The dataset of the SMB gameplay was preprocessed to extract coherent sequences of frames depicting
the targeted player actions to serve as demonstration data for model training. To capture a frame
sequence of a particular action, the starting frame was identified, and then a fixed number of
subsequent frames were captured together with the starting frame, forming the frame sequences of
the desired player actions. We kept each sequence to 35 frames, as most of the desired player actions
could be captured within this frame count. Depending on the desired temporal granularity, each
frame sequence can be downsampled by by sampling a subset of frames in the sequence at uniform
intervals. Further details on how we constructed these sequences are described in A.1.

We allocated frame sequences extracted from episodes of Level 1-1 for evaluation, and used sequences
from episodes of all other levels for training. Table 2 shows the distribution of frame sequences
extracted.

Action No. of Training Sequences No. of Evaluation Sequences

Run 8618 99
Jump 4634 49

Table 2: Distribution of frame sequences for training and evaluation.

4.1.2 Training and Inference

We train a video diffusion model with the architecture described in the Methods section. Action
text is encoded using a pre-trained CLIP text encoder. The output tokens are aggregated by an
attention-pooling network into an embedding vector which is then added to the time embedding of
the video diffusion model. We downsample each 35-frame sequence by sampling 7 frames at uniform
intervals. Each frame is downsized to 64x48 resolution.

The model is trained with Gaussian noise with zero mean and a variance that is controlled by a cosine
beta schedule over 100 diffusion timesteps. The model is trained using MSE loss. Training was
conducted over 300000 gradient steps with a batch size of 8 on a single NVIDIA RTX 4090 GPU.
The training process took approximately 48 hours of compute. Further model training details are
provided in the Appendix.

Using the same NVIDIA RTX 4090 GPU with 100 sampling steps, the MarioVGG model takes
approximately 4 seconds to generate a 6-frame video sequence of the game at inference.

4.1.3 Evaluation Metric

To quantitatively assess the model’s ability to generate realistic trajectories, we compute a normalized
Learned Perceptual Image Patch Similarity (LPIPS) [41] score between actual and generated frame
sequences. We opt for LPIPS as it is designed to measure perceptual similarity between images,
which is in line with our goal of visually replicating gameplay footage generated by a game engine.

Concretely, for a sequence of n actual frames Sa = {sa,1, sa,2, . . . , sa,n}, and corresponding sequence
of model-generated frames Sg = {sg,1, sg,2, . . . , sg,n}, the LPIPS is the mean LPIPS between frames,
i.e.

LPIPS(Sa, Sg) =
1

n

n∑
i=1

LPIPS (sa,i, sg,i)

We further normalize the LPIPS scores by computing the LPIPS score attained by a null model that
simply regenerates the initial conditioning frame across all time steps, Snull = {sa,0}n. Intuitively,
the normalization enables us to quantify the improvement in perceptual similarity between the actual
and generated game video, relative to a motionless video. It is worth nothing, however, that LPIPS
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Figure 2: Illustration of the masking done to process frames when computing the LPIPS score to
remove generated objects and artifacts and focus on similarity of actions.

uses extracted features from pre-trained ImageNet models to represent human vision, which may be
overly sensitive towards certain image characteristics compared to a human.

To compute the normalized LPIPS score for an evaluation set E with M pairs of sequences
{(S(j)

a , S
(j)
g )}Mj=1

Normalized LPIPS(E) =

∑M
j=1 LPIPS(S(j)

a , S
(j)
g )∑M

k=1 LPIPS(S(k)
a , S
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null)

Finally, the LPIPS score is computed over masked frames. Masking is important because in a
given sequence of frames, MarioVGG will procedurally synthesize and generate novel tiles and
environments that differ from the ground truth as the game scrolls forward, illustrated in Figure 2.
Masking allows us to evaluate the distance on the generated movement of Mario, measuring the
controllability, feasibility and closeness of the video actions generated w.r.t the ground truth, without
unnecessarily penalizing the creative synthesis by MarioVGG which is a clear benefit.

4.2 Results

4.2.1 Quantitative Results

We evaluate the performance of MarioVGG on a held-out validation dataset consisting of 148
sequences. Figure 3 shows the evolution of the normalized LPIPS score as training progresses. The
best normalized validation LPIPS score of 0.636 is observed after 210k training steps. Despite using
just embedding distance of the frames as a score approximation, there is still a clear decreasing LPIPS
score trend demonstrating learning of video sequences that get closer to what a ground truth Mario
actions and game movement would look like. This score loosely suggests that MarioVGG generates
sequences that have 37% better perceived similarity to actual game footage, relative to a motionless
video.

4.2.2 Qualitative Results

Figure 4 shows side-by-side comparisons of video frames generated by MarioVGG (bottom row)
and ground truth video frames from the validation dataset (top row), given the same initial frame
and action. We can observe visually that the model very successfully animates and simulates the
action and movement of Mario’s similar to the actual game video. This demonstrates that MarioVGG
has a good level of controllable video generation using the text actions provided. Additionally, we
can also observe new tiles in the environment (ramp) that were generated procedurally by the model
which is coherent with the surrounding environment, naturally preserving many aspects of the game
state and flow. Please see Figure 8 in Appendix A.3 for a greater diversity of these generations and
comparisons.
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Figure 3: Normalized LPIPS scores on our validation dataset across training steps.
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Figure 4: Comparison of video generated by the MarioVGG model and the ground truth sequence
of frames, given the same initial frame and action. There is no visible difference in the action of
the character in the game between. As it is a generative model, the frames generated also consist of
procedural generated objects and levels.

Game Physics Simulation. We also highlight elements of the game mechanics and interactions
rules that the model has learnt. In the top panel of Figure 5, we observe that MarioVGG succesfully
simulates and generates the gravity mechanics of the game. The generated video demonstrates Mario
falling off a platform as the “Run” action is used, all this while maintaining consistency of the
surrounding environment and generating coherent new tiles. We also observe that the model also
successfully learns interactions and collisions with objects. By conditioning the model generation
on an initial frame in which Mario is positioned directly behind an obstacle, and providing a “Run”
action text prompt the model generate gameplay video as shown in the bottom panel of Figure 5. We
observe that the model correctly generates a video in which Mario does not move (while animation
of the background continues) showing that the model has learnt that Mario cannot physically pass
through obstacles. These observations are seen consistently across many of the examples shown
demonstrating that the MarioVGG is able to learn the physics of the games purely from video frames
in the training data without any explicit hard-coded rules (game rules are in the weights of the model).
While there are still occasions in which failures occur in which the character disappears, a vast
majority of the video generations are consistent.

Chaining. We also evaluate the ability of MarioVGG to continuously generate and maintain long-
horizon video sequences by chaining sequences through the model. This provides a better illustration
of end-to-end simulated gameplay. In Figure 6, we show six chained generations from MarioVGG
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Figure 5: Examples of how MarioVGG has learned to simulate key elements of the game physics
from actions taken such as gravity (top) and collisions with objects/items (bottom).

along with the corresponding action for each generation and where the final frame of each generated
video sequence is used as the input frame for the next generation in the chain. We observe that
MarioVGG is able to generate and carry coherent and consistent gameplay videos between successive
generation steps, which means that we can generate gameplay videos that are arbitrarily long and are
feasible. We also note that as the chain progresses, the model synthesizes the levels and environments
completely independently that are coherent with the graphical language of the game. Only the first
input frame is truly grounded from a true game state.

4.2.3 Scaling Resolution

In this subsection, we conduct experiments to scale the (i) frame rate and (ii) resolution of the videos
generated by MarioVGG. First, we trained a model to generate 13 frames instead of 6 frames to
evaluate this effect and the ability of the model to potentially either generate longer sequences or
higher frame rate videos. Next, we trained another model with input frame dimensions of resolution
128x96 instead of 64x48 (as trained in our models presented) to evaluate the ability of the model and
method to generate higher resolution videos. In both experiments, we kept the model architecture the
same as in the previous sections with similar training parameters including training steps as well as
diffusion steps.

Table 3 shows the normalized LPIPS scores obtained on our evaluation dataset. While the normalized
LPIPS scores are higher than the scores obtained with our original model, they still demonstrate an
improvement over a null model. Given that all these models were trained for the same number of steps,
there could be potential room for improvement if provided with longer training runs when especially
when scaling resolution. These results show that our methods can be extended to generate video
games with higher video quality. In Figure 7, we compare the resolution quality between the two
models trained on frames with different resolutions. We can clearly observe a higher resolution output
generated which is to be expected, demonstrating that resolution generation generally dependent on
the data the model is trained on and the compute.

Experiment Normalized LPIPS

Baseline 0.636
Scaling Output Length 0.719
Scaling Image Resolution 0.798

Table 3: LPIPS scores from our experiments on scaling generation of videos to higher resolution.

8



Run

Jump

Run

Run

Run

Jump

Figure 6: Video generated when chained across multiple actions where the last frame of one generation
is used as the initial frame for the next generation. Video shows controllability and coherence over a
long time horizon.

Resolution: 64x48

Resolution: 128x96

Figure 7: Comparison between the baseline model (top) and a one that is trained to generate higher
resolution model (bottom).
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5 Related Work

Our work is related to the wider body of work on video generation models. These models convention-
ally predict a sequence of frames when conditioned or provided on an initial image [4; 3; 16; 12].
In many cases, these models serve to animate the provided image or scene and are not controllable
as the outcomes of the sequence of frames generated cannot be controlled, only predicting the most
likely next frames.

Another class of models are controllable video generation models, which are commonly provided
signals for conditioning the generation process. These conditioning signals can take multiple forms
like specific vectors [17] or modalities like text. Most common recent controllable models are text-to-
video models, due to the general interface and vast representation capabilities of text [36; 5; 38]. Such
models have been shown to work on small scale datasets and constrained text-space [18] and also scale
to heavily captioned large-scale datasets. An alternative to captioning and text-labels that commonly
are required for text-to-video models, are controllable latent vectors or latent actions [19; 6] that are
also learned from the data. This enables video models to be more easily trained on larger-scale video
data as it does not have to be captioned or labelled but such a representation comes at a cost of no
semantics that come with text. Similar to our work, Genie [6] also learns a video model capable of
simulating 2-D platformer games.

Another closely related family of work are world models, which are models that have a representation
and understanding of how the world or an environment operates, capturing essential features and
relationships. Similar to video models, world models should encode both spatial and temporal
information to act as real-world simulators [38] which can be used for prediction, planning and
decision making [8]. This is also commonly known as dynamics models which has a history in
robotics, optimal control, model-based reinforcement learning [33; 37]. Most of the work in this
area involve learning forward dynamics models which predicts the next state given the current state
and action or control input. States can be low-dimensional representations of a system [7] or higher-
dimensional ones such as pixel or image-based representations [13; 14; 15] The video game models
we are learn are forward dynamics models, but predicts a sequence of future frames rather than just a
single frame.

Closest to our work is concurrently released work GameNGEN [35] which also explores using
diffusion models to be used directly as game-engines. Both work similarly operates over just a
single game domain and focuses on controllability over player and consistency and coherence over
game-play sequences. Where we differ is in the modelling choices and the game domain. MarioVGG
generates a sequence of frames while conditioning on a single frame and a text-encoded action,
while Valevski et al. [35] conditioned the model on a sequence of previous states and actions (i.e.
vectors) to predict a single frame. One major focus and result in GamNGEN was the interactive
generation times which MarioVGG is not capable of at the moment.

6 Discussion and Conclusion

Limitations and Future Work. We discuss several limitations of MarioVGG relating to the
two fundamental requirements for video game generation (game controllability and game state
preservation) highlighted in this work. For game controllability, unlike game engines which enable a
deterministic relationship between the player’s input and the game response, MarioVGG is highly
dependent on the quality and scale of data available, which opens up the possibility for generated
trajectories to be inconsistent with the player’s input given scenes and actions that are out of distrbution
or diverge. Video models are also probabilistic in nature and weobserve that the input action text
is not obeyed all the time. Some examples of failure cases can be observed in Figure 12 in the
Appendix. However, we believe this due to the limited gameplay data. Potential improvements could
be done with some data augmentation methods, and scaling and collecting more diverse gameplay
data through reinforcement learning agents. Architecturally, there is also more to be explored in
conditioning the model on previous frames and actions to enhance consistency.

For game state preservation, we note that MarioVGG currently does not have an explicit terminal
state. Thus, even if MarioVGG generates a trajectory resulting in a terminal state, it will continue
generating subsequent trajectories when prompted, instead of reverting the initial game state to the
latest checkpoint. While this can be solved using a network head dedicated for tracking game states

10



outside of information that can be captured from video frames, an open research question is how
terminal states are decided in a fully generative game that has no "ground truth" equivalent and if the
terminal state can also be included in a prompt-like description.

From a game development perspective, there are also some practical limitations. The non-negligible
inference time of the model means that a player would need to wait several seconds for MarioVGG to
generate the trajectory of their desired action which is not practical and friendly for interactive video
games. However, these models have yet to be optimized for inference and could be potentially sped
up to interactive speeds through the use of weight quantization, and rewriting code in lower-level
languages to remove runtime overhead. We would also like to not that this all experiments and
inference was done on a single consumer grade GPU only.

Other future directions also include the option for controllable environment generation. Levels and
objects in MarioVGG are not controllable and are generated procedurally. While this procedural
generation of environments is a positive and desirable features, having controllability over the
generation of environment features and elements is also potentially important. For example, where
prior work which has used LLMs to output tiles from text descriptions which are then parsed in to the
game engine [32].

Lastly, while we only focus on a single game and domain of Mario, the long-term goal of such a
research direction is to be able to use these models as game engines and democratize interactive
game creation development the same way LLMs have democratized programming. Hence, a step
in this direction could be to improve and extend our model’s ability to generate gameplay videos
beyond Super Mario Bros. to generate novel variations in Super Mario Bros. art styles on the fly, or
even accommodating general 2-D platformers altogether. Training data augmentation is a potential
approach to generalize our model beyond SMB specifically, such as the use of text-guided diffusion
models and inpainting techniques on existing game play data to generate synthetic scenes to be used
to train the model [40].

Conclusion In summary, this work presents a technical report and investigation into the use of
video generation models for interactive and controllable video games, by passing game engines.
We highlight some desiderata and key features that are required of video generation models if
they are to be used as potential game engines namely (i) controllable videos and actions, and (ii)
game state preservation and continuity through consistent and coherent frames over long sequences.
We then briefly explore some current limitations and shortcomings of pre-trained general video
generation models for this application. To demonstrate and answer if video generation models could
potentially have this capability in the future, we focus on developing a model that perform reliable
and controllable video game generation on just a single 2-D game domain of Mario, which consists of
game mechanics such as interactions and game rules as well. Trained on just a single consumer-grade
GPU, our text-to-video diffusion model, MarioVGG can generate controllable game frames that are
consistent and follow game mechanics.

While replacing game development and game engines completely using video generation models
might still not be practical and plausible at the moment due to the lack of generality and control in
many aspects of video generation, we show that it is possible and an option with just a limited set of
data on a single game domain. With an increase in scale and diversity of data, using video generation
models for such an application should not be discounted.
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A Appendix

A.1 SMB Dataset Action Space

The player actions are represented by an unsigned 8-bit integer from 000000002 (010) to 111111112
(25510) where each bit corresponds to a button used during the gameplay in the captured frames, in
the following order from MSB to LSB: Up, Down, Left, Right, A, B, Start and Select. Table 4 shows
some examples of actions and their corresponding decimal integer representations.

Action Up Down Left Right A B Start Select Integer (Decimal)

Walk right 0 0 0 1 0 0 0 0 16
Run right 0 0 0 1 0 1 0 0 20
Walk left 0 0 1 0 0 0 0 0 32

Jump 1 0 0 0 0 0 0 0 128
Run right and jump 1 0 0 1 0 1 0 0 148
Run left and jump 1 0 1 0 0 1 0 0 164

Table 4: Examples of action representation in the action space

The frame sequences of the “run right” action were relatively simple to capture, as Mario only ran to
the right on a flat ground or an object. It was easier to determine the starting frame of the “run right”
action for a complete frame sequence to be captured, as the frame would have the action integer
20 and provided its previous frame would depict a different action. Then, a certain number of the
subsequent frames were captured. The frame sequences captured might include the character running
into an obstacle or falling off the ground or the object it was running on. This was acceptable as it
could introduce the game mechanics in the model training.

However, the frame sequences of a “run right and jump” action were more complicated. The starting
frame was harder to determine because the character was already leaving the ground or the object
from which it jumped when action integer 148 was captured. Thus, the algorithm needed to be
designed so as to look back on previous frames to find the most recent frame in which the character
was just about to leave the ground or the object from which it jumped. Usually, Mario was walking or
running right before the jump, thus the most recent frame with action integer 16 or 20 was considered
to be the starting frame of the jumping action. Also, depending on Mario’s surrounding environment,
the number of frames needed for Mario to complete the jumping action could vary. For example, the
character took the highest number of frames to complete the action of jumping from a floating object
and landing on an open ground; whereas the character took the lowest number of frames to complete
the action of jumping from the group and onto an obstacle like pipes, cannons or rock hills. From our
observations of the dataset inspection, the total length of the frame sequence of jumping right needed
to be at least 32. The subsequent frames captured must not include any action making the character
moving to the left either amid the air or on the ground, as this would introduce noise to the training
dataset.

A.2 Model Training Details

Additional model training details are provided in Table 5.

A.3 Supplementary Results
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Figure 8: More diverse examples and demonstrations of MarioVGG across different levels that have
different styles.
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Figure 9: An example of SVD’s shortcomings in generating coherent videos across multiple inference
calls. In the first column on the left, we prompt SVD to generate game footage given an initial
screenshot of a hypothetical first-person shooter game. We observe that SVD initially generates
coherent video of the character progressing forward on the screen. However, after attempting to
generate subsequent footage from the final frame of the first video (right column), the generated
video is no longer coherent: the character’s motion abruptly stops, and on-screen movement becomes
blurry (see boxed region).
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Figure 10: Another example of SVD’s shortcomings in generating coherent videos across multiple
inference calls. In the first column on the left, we prompt SVD to generate game footage given an
initial screenshot of a hypothetical 2-D platformer game. We observe that SVD generates a coherent
video of the game characters moving to the right of the environment. However, after attempting to
generate subsequent footage from the final frame of the first video (right column), the generated video
is no longer coherent: the characters appear blurry and jittery around the tree (see boxed region),
instead of continuing their movement to the right.
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Parameter Value

Resolution 48x64
Base Channels 160
Num. Res Blocks 3
Num. Network Parameters 166M
Diffusion Timesteps 100
Diffusion Beta Schedule cosine
Batch Size 8
Training Steps 300k
Learning Rate 1e-4
Loss L2
Optimizer Adam (β1 = 0.9, β2 = 0.99)
EMA Update Steps 10
EMA Decay Factor 0.999

Table 5: Training configuration for MarioVGG.

Figure 11: Examples of SVD and Haiper’s inability to generate fine-grained player actions. In the
column on the left, the model was prompted to generate a video corresponding to the action “reload
gun”, but instead generated motion in the background and kept the reloading animation unchanged
across frames. In the column on the right, the model was prompted to generate a video corresponding
to the action “jump”, but generated little to no vertical movement of the game characters.
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Figure 12: Illustration of some failure cases of the MarioVGG model. (Top) when completing the
"jump" action, Mario lands inside the obstacle not obeying collisions. (Bottom) Mario suddenly
disappears while jumping on to a platform with many coins that have similar appearances to Mario
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